Gene Therapy Landscape

December 2023

Applications of regenerative medicine, including GTx, cell-based GTx, and cell therapy, vary greatly depending on the technological approach and drug delivery environment

Sources: Sources: ASGCT; Alliance for Regenerative Medicine, Cell & Gene, GeneHome

This presentation focuses on non-oncology DNA-based GTx approaches, including gene editing, gene replacement, and non-oncology gene addition

Key: TDA/EMA approved agents

Despite facing substantial developmental challenges, the gene therapy market has achieved remarkable success in the last 5-10 years

Sources: Landhuis E, 2021, Nature; What Is Biotechnology: Gene Therapy summary

Blues

The majority of the 11 approved agents, which are all gene replacement therapies, in US/EU markets treat hematological or CNS diseases

Overview of Approved Gene Replacement Therapies (Products Approved in US and/or EU Markets)								
	ТЛ	Indication		Year First Approved	All Approved Geographies	Delivery		
	IA					ROA	Frequency	Packaging
U NOVARTIS Zolgensma	CNS		SMA	2019		IV, IT	Single dose	
Orchard therapeutics Libmeldy			MLD	2020		IV		
bluebird <mark>bio</mark> Skysona		Q	CALD	2022		IV		
Upstaza			AADC Deficiency	2022		IC		
SAREPTA Elevidys			DMD	2023		IV		
uniQure Hemegenix	Hematologic		Hemophilia B	2022		IV	Single dose	
bluebirdbio Zynteglo			β -thalassemia	2022		IV		
		Q	Hemophilia A	2023		IV		
Orchard therapeutics Strimvelis	Metabolic	Q	ADA	2016		IV	Single dose	88° 🕢
Roche Luxturna	Ophthalmic		LCA	2017		IVT	Single dose	
Krystal Vyjuvek	Dermatologic	Q E	pidermolysis Bullosa	2023	٢	Topical	Redosable	

All approved drugs are GRTs for the treatment of autosomal recessive, monogenic diseases

In the last two years, the number of approved GRTs has doubled; single-dose therapies have an average list price of \$3.0M per patient

Viral vectors are the only approved transgene delivery vehicle; *ex vivo* and *in vivo* GRT require different features and predominantly rely on lentiviral or adeno-associated viral vectors, respectively

Transgene Packaging Trends

• As the current standard for transgene packaging, viral vectors (e.g., AAV, LV, HSV-1) remain the most effective delivery mechanisms

Cell-based Gene Replacement Therapy (ex vivo)

- LV vectors typically target dividing cells (e.g., stem cells, immune cells) and integrate into the host genome, making them most amenable to *ex vivo* approaches
- Due to high risk for insertional mutagenesis and the associated risk of cancer, *in vivo* use of LV vectors is unlikely

Gene Replacement Therapy (in vivo)

- AAV vector packaging delivery dominates *in vivo* GRT, which most commonly targets non-dividing cells (e.g., neurons, photoreceptors, liver cells)
 - AAVs have limited packaging capacity and are not ideal for larger transgenes; however, GRTs like Elevidys overcome this barrier by delivering a μ-dystrophin gene ("mini" dystrophin)
 - Target tissue type drives AAV serotype selection; AAV9 vectors target at least 5 tissue types and have become prominent in the pipeline
- Vyjuvek, the most recently approved GRT, is the first <u>topical and redosable</u> GRT, and employs a novel HSV-1 vector
 - HSV-1 vectors target both dividing and non-dividing cells without integrating into the host genome; topical administration and redosing reduce potential concerns of HSV-1 immunogenicity and transient gene expression

Clinical Development for Non-Oncology Gene Therapy

GRT represents the most common and mature approach in the GTx pipeline; a minority of agents employ novel non-viral delivery methods while the majority use classic viral vectors

Summary of Clinical Development for Non-Oncology Gene Therapies

Bluestar

*Includes clinical stage assets with trials in the US and/or EU+UK; Abbreviations: Exa-cel- exagamglogene autotemcel; lovo-cel- lovotibeglogene autotemcel Sources: PharmaProjects

Gene replacement/editing approaches tend to focus on monogenic diseases with known etiologies; gene addition offers potential in diseases with unknown disease-causing mutations

As the gene therapy space continues to rapidly evolve, it is important to monitor current market challenges/considerations and the potential impact of proposed solutions

Abbreviations

Term	Abbreviation
Spinal Muscular Atrophy	SMA
Metachromatic Leukodystrophy	MLD
Ornithine Transcarbamylase Deficiency	OTCD
Lipoprotein Lipase Deficiency	LPLD
Cerebral Adrenoleukodystrophy	CALD
Duchenne's Muscular Dystrophy	DMD
Adenosine Deaminase Deficiency	ADA
Leber's Congenital Amaurosis	LCA

Glossary

Term	Definition
Transgene	Gene that has been deliberately introduced into the genome of an organism
Viral Vector	Modified virus used as a delivery vehicle to transfer genetic material into a host cell
Non-viral Vector	Non-viral delivery system or method used to transfer genetic material into host cells
Autologous	Derived from an individual's own body
Allogeneic	Derived from a donor other than the patient

